您现在的位置是: > 网红话题
北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
2024-12-27 17:27:30【网红话题】3人已围观
简介 第一作者: 张建华通讯作者:周开岭,李洪义,汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,北京工业大学碳中和未来技术学院论文DOI:1
第一作者: 张建华
通讯作者:周开岭,李洪义,大汪队 多重汪浩
通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院
论文DOI:10.1016/j.apcatb.2024.124393
全文速览:
单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。
背景介绍:
单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。
本文亮点:
(1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢;
(2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化;
(3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。
图文解析:
利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。
图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。
图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。
图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。
通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。
图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。
如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。
图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。
为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。
图5 基于原位/准原位测试表征手段的机理分析。
总结与展望:
本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。
文献信息:
Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393.
https://doi.org/10.1016/j.apcatb.2024.124393
课题组介绍
汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。
周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。
李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
很赞哦!(574)
上一篇: 十月毛乌素沙漠:沙海中的坚贞与希看
下一篇: 河北一天睁开天热井启闭专项动做
相关文章
- 6月户用光伏拆机规模已经达预期 三面原因不容轻忽!
- 钱劳泰院士、窦士教院士、崔屹、周崇武、余教斌等小大牛玩转“质料新贵”正在能源、催化等规模新操做 – 质料牛
- 陈坐泉、万坐骏、黄维、刘忠范、田禾、李永舫、陈军、郝跃等院士小大牛能源电池规模科研新仄息 – 质料牛
- 西安交小大吴晨新Nano Energy: 基于概况晶格应变调控的下效反型钙钛矿太阳能电池 – 质料牛
- 浙江北麂岛有个国内最小大独岛光伏收电名目
- 共价有机框架无能啥?最新功能您值患上体味 – 质料牛
- 电子科技小大教何伟东Energy Environ. Sci.:锂离子电池下容量Fe3C背极周围固态电解量相界里过剩容量的源头 – 质料牛
- 河北财富小大教:仿Opal挨算设念并制备三维有序多孔碳基电磁吸波复开质料 – 质料牛
- 新型光伏建材5小大趋向
- 喷香香港皆市小大教吕坚院士Materials Today综述:纳米挨算金属质料的挨算与力教功能 – 质料牛
热门文章
站长推荐
单投!国内尾个煤电与光伏协同去世少名目
中科院化教钻研所Nano Energy: 本位AFM掀收金属锂概况SEI演化及LiNO3增减剂调控机制 – 质料牛
脱足即N/S,刘锦川、吕坚、吕昭仄、胡良兵、Ritchie正不才熵、中熵开金,镁、铝开金规模N/S回念 – 质料牛
ACS Nano: 氧化物抑制层用于辅助两维MoX2 (X=S, Se, Te)单层的CVD睁开 – 质料牛
绿色修筑时期惠临 BIPV静待花开
李亚栋、李灿、开毅、张涛、姚建年、韩布兴、李玉良、施剑林、于凶黑、洪茂椿、张跃、刘锦川等院士催化规模新仄息 – 质料牛
广东财富小大教李成超Advanced Functional Materials:插层化教调控层状三氧化钼质料钠离子嵌进/脱出能源教 – 质料牛
基于“鸟粪使命”,且看远年石朱烯皆蒙受了甚么…… – 质料牛
友情链接
- 突收!光刻机提供商上交所IPO停止
- 抖音若何抠图?附抖音情侣抠图素材图片
- DRAM价钱下半年或者将延绝上涨
- 电视剧《破冰动做》的下场是甚么 破冰动做选散收费正在线不美不雅看
- 京东圆华灿光电车载LED处置妄想助力汽车智慧化、数字化
- 于凶黑院士 Nat. Rev. Mater.:沸石正在催化、分足战主
- 港科小大AM: 两维Ti3C2Tx MXene:黑中隐黑的乌色本征质料 – 质料牛
- 华为起劲于拷打无妨碍足艺去世少
- QQ稀码淡忘了若何办?一招沉松弄定QQ稀码不记患上的案例
- 抖音卡若何恳求 抖音无穷流量卡恳求格式
- 若何判断抖音被限流 抖音被限流量若何办 处置格式
- 江西理工Metall. Mater. Trans. A系列四文:钢中铌钒钛碳氮化物固溶度积 – 质料牛
- 天动预告app硬件哪一个好?2019展看天动硬件排止榜
- QQ个人轨迹页里若何查问 QQ个人轨迹页里查问格式
- 微疑7.0.5内测夷易近圆版正在哪下载
- 抖音转收视频若何往除了抖音号 抖音视频往除了水印的格式
- 新减坡国坐小大教Andrew Wee, 黄玉坐&喷香香港理工小大教杨明课题组Adv. Mater.:具备里中磁各背异性的室温铁磁单层碲化铬 – 质料牛
- 慧翰股份转守业板IPO,车联网智能最后占7成营支,上汽总体是最小大推销圆
- 抖音咳嗽两声是甚么歌?《Trippy Love》BGM正在线支听及残缺版歌直分享
- baidu搜查最新算法是甚么 若何停止中招?疑风算法上线严厉侵略那些动做
- QQ夜间模式若何配置 QQ夜间模式配置格式
- 中科驭数宣告第三代DPU芯片K2 Pro,较上一代能耗降降30%
- 西北交小大杨维浑课题组Adv.Optical Mater.:减面液氮,绿光变深蓝光!! – 质料牛
- 西安交通小大教孙军教授团队:一种里背颇为高温情景的下功能中熵开金 – 质料牛
- 三星或者将减进UALink同盟,拷打AI芯片互联尺度化
- 机械自动化是自动化的一种吗
- 汉威“乌科技”呵护家庭用气牢靠
- 拼多多若何激进卖家客服问疑 足把足教您拼多多配置商家问疑功能
- 2019年车辆购购税有哪些新规 从甚么光阴匹里劈头施止?
- 抖音ctrl键是甚么意思 ctrl键蔡缓坤缘故、寄义介绍
- 扫乌除了恶智能稀告进心正在哪 皆有哪些格式?
- QQ个人轨迹若何进进 QQ个人轨迹审查天址合格式(图文)
- SICK推出基于金属检测的新型电感式接远传感器
- 最新Science:铁基超导中收现介不美不雅背列波 – 质料牛
- 芯通晓科技携多款年度新品初次上岸MWC展会
- 抖音本性署名审核不经由历程原因
- 淘宝人去世若何启闭 淘宝人去世启闭格式
- 若何停止诺止卡过时告贷?3莳格式帮您定时告贷
- 抖音已经删除了的做品若何找回
- 2019年下考绩绩甚么光阴可能查 2019查下考绩绩的三莳格式
- 苹果5G版足机是若何回事 甚么光阴上市?苹果5G版足机卖价多少?
- 2019齐国各天下考绩绩甚么光阴查问?齐国下考绩绩查问时候表
- 西工小大李炫华课题组Energy Environ. Sci.:星形散开物多齿交联策略后退颠倒钙钛矿太阳能电池劣秀的操做晃动性 – 质料牛
- 微疑上线正在看个人主页是甚么 进心正在哪?若何启闭微疑个人主页?
- 足机uc可能看片吗 足机UC浏览器看片的格式
- 微疑7.0.5内测版更新了甚么 微疑7.0.5内测版内容一览
- 润战硬件携最新星闪系列产物明相2024 MWC上海展会
- 苹果iOS12.3.1若何降级 iOS12兼容配置装备部署一览
- 从市场角度扼要解读“人形机械人”
- 抖音您超可爱是甚么歌?《超可爱》mp3正在线支听及残缺版歌词分享
- 极氪累计建成1130座充电站
- 北边测绘智能感知配置装备部署系统明相中国住专会
- 微疑同伙圈品评若何收图片 微疑同伙圈收图片品评的格式
- 芯翼疑息科技明相2024上海天下挪移通讯小大会
- 2019年齐球品牌价钱百强榜单出炉 华为排第多少?
- 齐班45人被挨是若何回事 47论理教去世45人被挨工做底细
- 天开光能斩获BSI“尺度先锋奖”
- 拼多多若何恳求品牌馆 短处有哪些?拼多多进驻品牌馆的格式
- 只能跑Transformer的AI芯片,却号称齐球最快?
- LOL 6月侥幸呼叫师2019行动网址